Thermal control in building using MPC under air quality constraints

Suzanne Lesecq¹, Shalika Walker²
Samira Roshany-Yamchi³, Susan Rea³, Alan McGuibney³
Kritchai Witheephanich³, Maxime Louvel², Mykhailo Zarudniev¹

¹CEA, ²TU/e, ³CIT

Suzanne.lesecq@cea.fr

This work is supported by TOPAs H2020 project, GA nb 676760 (https://www.topas-eeb.eu/).

Context

- 40% of energy consumed by buildings worldwide
- Strategies for
 - Energy conservation
 - Energy savings
- Better coordination among Building Automation Systems (FP7 SCUBA project)

- One of TOPAs objectives: **advanced control techniques**
 - Ventilation
 - Heating
 - Energy savings
 - Take into account “user comfort”, at least bounds on Temp. & CO2
Objectives

- Develop a generic (D)MPC framework to support control design
- Deploy, Test and Validate
 - Post-grad room in NIMBUS
 - Improve thermal comfort and air quality
 - Energy savings
 - Peak demand management / energy cost

- Post-grad room: open office in NIMBUS building
 - CIT Campus, Cork, Ireland
 - Climate zone: temperate maritime (mild winter, cool summer, regular rains)

Outline

- Context and objectives
- “System” under study
- Modelling
 - Thermal: white-box lumped capacitance (2RC)
 - CO2 concentration: mass balance
- Model Predictive Control for thermal and CO2 regulation
- Implementation in real field
 - Model tuning with real field data
 - Modelling for control?
- Next steps
“System” under study

- **NIMBUS – Proof of Concept**
 - Post-grad area split in 3 zones
 - **White box model**
 - CO2 concentration, thermal RC equivalent model
 - **Coupling** between zones (CO2 and temp.)
 - **Natural ventilation, controlled openings (windows)**
 - Outdoor conditions
 - Modular → “extendable”

- **Modelling - Thermal**

 - For each zone:
 - Simplified Lumped capacitance model (2RC)
 - **Coupling** between zones (natural convective heat transfer)
 - Influence of occupants \(\phi \)
 - Influence of heaters \(r \)
 - Influence of openings (natural leak, windows opening) (outdoor temperature)

 - For zone 1: 6 ODEs:
 - \(T_1, T_{sw}, T_{ww}, T_f, T_c, T_r \)

 - Similar approach for other zones
Modelling – CO2 concentration

• For each zone:
 Mass balance
 – **Coupling** between zone (diffusion via Fick’s law)
 – Influence of **openings** (natural leak, windows opening) (outdoor CO2)
 – Influence of **#occupants**
 • Uniform distribution over the room
 – 1 ODE per zone

Continuous time linear model

For both parts of the model: parameters fixed thanks to **basic knowledge** on building materials, building geometry, mean CO2 production and heat per occupant

Outline

• Context and objectives
• “System” under study
• Modelling
 – Thermal: white-box lumped capacitance (2RC)
 – CO2 concentration: mass balance
• Model Predictive Control for thermal and CO2 regulation
• Implementation in real field
 – Model tuning with real field data
 – Modelling for control?
• Next steps
Application of Model Predictive Control to NIMBUS

(D)MPC framework

Control objectives
Indoor air quality
Thermal Comfort
Energy price

Constraints
Maximum heating power
Windows opening

Measurements per zone:
- temperature
- heating power
- windows opening

Measurements for the room:
- #occupants

Objectives
- Thermal Comfort
- Energy price

Constraints
- Maximum heating power
- Windows opening

Information exchange between zones: possibly, #occupants, heating power, windows opening

Results in simulation

<table>
<thead>
<tr>
<th>Power Consumption (kWh)</th>
<th>Conventional Control (on/off)</th>
<th>Centralized Control (CMPC)</th>
<th>Decentralized Control (DeMPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>181</td>
<td>127.85</td>
<td>138.59</td>
</tr>
<tr>
<td>Gain compared with conventional controller</td>
<td>0%</td>
<td>30%</td>
<td>23.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of states</th>
<th>Number of inequalities</th>
<th>Average optimization time per sampling time (normalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPMC</td>
<td>21</td>
<td>660</td>
</tr>
<tr>
<td>DeMPC</td>
<td>7</td>
<td>220</td>
</tr>
</tbody>
</table>
Outline

• Context and objectives
• “System” under study
• Modelling
 – Thermal: white-box lumped capacitance (2RC)
 – CO2 concentration: mass balance
• Model Predictive Control for thermal and CO2 regulation
• Implementation in real field using the (D)MPC framework
 – Model tuning with real field data
 – Modelling for control?
• Next steps

Implementation of control in real-field using (D)MPC framework

• Have a realistic comportemental model
 – Parameter identification \(\hat{\theta} \) for model tuning
 • Instead of \(R \) and \(C \), identify time constants \(\tau = RC \)
 • Building geometry known

 – Non-linear optimisation pb with constraints (+ODE integration)
 \[
 \hat{\theta} = \arg\min\{\|x(t, \theta) - \text{measures}(t)\|_2^2\}
 \]
 s.t. \(\theta \in [\theta_{\min}, \theta_{\max}] \)
 where \(\frac{dx}{dt} = f(x, u, t, \theta) \)
Model tuning

- Data extracted from TOPAs oBMS
- Parameter identification and model validation for the white-box continuous-time non-linear model

Modelling for Model Predictive Control

- White box model \(\rightarrow\) state space model for MPC
 - Linearisation
 - Exact discretisation: matrix exponential
 - Sparse matrix \(\rightarrow\) Full matrix

- Use directly identification techniques (Output Error + constraints)?
 - directly estimate discrete-time state-space model
 - Take advantage of knowledge from white-box model
 - Multiple Inputs Single Output (MISO) models
 - Transfer functions \(\rightarrow\) state-space representation

Initial model
Measurements
Model tuned

#occupants? Windows opening?
• As for many industrial systems: **availability & reliability of data?**
 – Data losses (wireless, wired)
 – Data accuracy: e.g. #occupants
 – Noise
 – Synchronisation
 – Occupancy per zone
 - Badge
 - Several persons
 - No information on the zone: uniform distribution, periodic reset
 – Power delivered by heaters
 - Coarse estimation (inlet/outlet temperature for the whole floor)
 – Windows opening
 - Manual ones!
 - Controlled ones but also partly non-functioning

2 days of trustful data record
→ Identification
→ Validation

Modelling for Model Predictive Control

- **Model Inputs:**
 - Windows opening per zone: w_1 (N.U.), w_2 (N.U.), w_3 (N.U.)
 - Heaters: P_1 (kW), P_2 (kW), P_3 (kW)
 - T_{out} (°C)
 - #occupants: Nb_1 (N.U.), Nb_2 (N.U.), Nb_3 (N.U.)

- **Model Output:** T_1 (°C) = y

\[
[x]_{k+1} = [A][x]_k + [B_1 \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} + B_2 \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} + B_3[T_{out}] + B_4 \begin{bmatrix} Nb_1 \\ Nb_2 \\ Nb_3 \end{bmatrix}
\]

\[
T_1 = y_k = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x_k + D[u]_k
\]

For zone 1
• **Model selection**: standard deviation, pole/zero simplification, goodness of fit ...

![Model validation with another set of data](image)

Model validation with another set of data

Modeling for Model Predictive Control

- **Model Inputs**:
 - Nb1 (N.U.), Nb2 (N.U.), Nb3 (N.U.)
 - windowZ1 (N.U.), windowZ2 (N.U.), windowZ3 (N.U.)

- **Model Output**: CO2\(_{z2}\) (ppm) = \(y \)

\[
[x]_{k+1} = [A][x]_k + B_1 \begin{bmatrix} Nb_1 \\ Nb_2 \\ Nb_3 \end{bmatrix} + B_2 \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}
\]

Measured “disturbances”

Control inputs

\[
CO2_{z1} = y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x_k + D[u]_k
\]

Sustainable Places 2017
S. Leseq 17
Modelling for Model Predictive Control

- **Model selection**: standard deviation, pole/zero simplification, goodness of fit ...

Outline

- Context and objectives
- “System” under study
- Modelling
 - Thermal: white-box lumped capacitance (2RC)
 - CO2 concentration: mass balance
- Model Predictive Control for thermal and CO2 regulation
- Implementation in real field
 - Model tuning with real field data
 - Modelling for control?
- Next steps
Next steps

• Currently under implementation on NIMBUS
 – (D)MPC framework developed by CIT
 – through LINC middleware (M. Louvel, presentation on Wednesday)

• Model improvement
 – Take solar irradiance into account
 – Longer period of time for identification / validation

• TOPAs: “GAP reduction”
 – Model re-adaptation when the “gap” (prediction / measure) is too large